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Abstract . .  

Future systems performance requirements have led to aheightened awareness of the erosion 
issue and to the development of erosion investigations in the U.S. Army and Navy. These 
investigations involve experimental and modeling efforts to understand the thermal, chemical, 
and mechanical contributions to erosion/wear. A description of the mechanistic erosion 
representation follows in this report. The calculation procedure is illustrated, including details 
of the mass transport scheme, gas surface interface, surface melt wipe model with dynamic 
gridding, and the equilibrium kinetics model, which utilizes the NASA Lewis thermochemcial 
library. 

The following cartridges are investigated: the M829A2 APFSDS in the M256 120-mm tank 
cannon and the M791-APDS-T and 616W-APFS (the "original" M919), both in the 25-mm 
Bushmaster cannon. The resulting mass lost per round for these systems compares well 
qualitatively with the experimental data, providing some support to the assumptions in the code. 
The primary conclusion is that carburization leading to iron carbide formation is an important 
contributing factor for much of the material lost from the steel barrel once it is exposed through 
cracks or chips in the surface coating. 
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1. Introduction 

System performance demands are forcing changes in gun tubes in the areas of pressure limits, 

length, firing rate, and erosion resistance. This has created a resurgence of the interest in gun tube 

erosion and the associated mechanisms. Historically, the propellant adiabatic flame temperature was 

used as an indicator of the erosivity of a propellant. Unfortunately, flame temperature is not the only 

factor [1,2] influencing the erosion process, which includes mechanical abrasion, pyrolysis, melting, 

and spalling. Also, once the erosion rate was predicted using the flame temperature correlations, 

understanding what could be done to mitigate the erosion was left a mystery with the exception of 

the obvious solution of applying surface coatings or ablatives. 

The effectiveness of surface coatings depends upon the ability of the coating to block the thermal 

and chemical attack of the propellant combustion products with the gun bore surface. Permanent 

tube coatings, such as chromium, have been successfully implemented in both artillery and direct-fire 

systems. One concern for the use of chromium as a coating is that the hexavalent state used in 

electroplating is environmentally undesirable to the level that one day it may be eliminated as a 

design option. Many other coatings, such as functionally gradient coatings and ceramic coatings, 

although unsuccessful in the past, are continuously being examined as possible candidates [3]. Also 

being examined are refractory metals, such as rhenium, molybdenum, niobium, and tantalum, of 

which tantalum appears to be the optimal choice [4]. Much effort is being placed in coating process 

technology for these materials by various elements of the Army and Navy. Successful 

implementation of propelling charge additives, such as talc, Ti02, waxes, greases, and combinations 

thereof, that deposit on the tube or in the boundary layer and act as coatings are usually Edisonian 

in nature and without knowledge of the mechanisms of how or why one additive works better than 

another. 

Attempts to model erosion using first principles have been and are currently being made [5-8], 

although it is believed that significant additional work is still required to understand the fundamental 



physics involved. In this report the possible mechanisms will be elaborated upon and then applied 

to specific systems. 

2. Mechanistic Description 

A modular treatment of the contributing factors to erosion consisting of three fully coupled 

portions, to include thermal ablation with an iterative solution for the surface regression; independent 

heat and multicomponent species mass transport to the surface; and full equilibrium thermochemistry 

was utilized. The contributions due to mechanical wear and abrasion, however, are not included. 

A surface control volume treatment ensures conservation of mass. The gas-phase properties in the 

core flow of the gun tube from the XKTC [9] or NGEN [10] interior ballistic codes are used in the 

calculations, as well as species data from EBBLAKE [11-13] or NGEN. The thermochemistry 

calculation incorporates the NASA Lewis [14] thermochemical database. 

Primary features include: 

• Variable surface thermo-physical properties: specific heat Cp and conductivity k. 

• Surface material phase change from base-centered cubic (BCC) to face-centered cubic (FCC). 

The material replenishment section recognizes the surface temperature and the correct phase. 

There are no phase change hysteresis nor are there two-phase (BCC+FCC) regions. 

• A user-defined "freeze-out" temperature to enable the surface chemistry portion. 

• A user selection for two-phase control volume temperature: (1) Surface temperature and (2) a 

mixture control volume temperature with both gas- and solid-phase contributions. 

• User-defined surface materials, both reactant and product species. 



• A user-defined surface coating - if any. 

• No hardwired inputs. All primary inputs are user defined. 

The following assumptions are in the model: 

• One-dimensional (1-D) heat conduction. 

• Subsurface 1-D diffusion only of carbon. 

• All surface liquids and gas products are removed. 

• No feedback to the interior ballistics calculation in the core flow. 

• Released chemical energy treated as a source term. 

• Species are chemically frozen from core flow to the wall. 

The description, shown conceptually in Figure 1, enables the surface to heat convectively until 

the user-defined freeze-out temperature is overcome. At this point, the control volume at the surface 

is defined and supplied with species from the mass transport routines. Surface reactions are then 

permitted to occur, which release additional energy into the system as a surface source term and 

produce various gas, solid, or liquid products. The reaction products can be either unvaried, as some 

solid materials, or be removed from the area as liquids or gases. The latter case results in pyrolysis 

or ablation. As the surface regresses, the solids are refreshed accordingly with fresh steel. 

Preliminary calculations must be made using interior ballistic codes to provide the core flow state 

variables of temperature and pressure as well as the velocity and the species concentrations. These 

outputs are then used as input along with a user-defined input file to the calculation. 
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Figure 1. Conceptual Erosion Description. 

3. Ablation-Conduction Model and Computational 
Approach 

The in-depth temperature response, T(r), of the unablated (solid) material is modeled using the 

1-D heat conduction equation as follows: 

PC 
£T  = J__8_ 

p3t       rPdr 
Vk^ 

dr) 
(1) 

By setting ß = 0 or ß = 1, the planar or axisymmetric form of the governing equation can be 

obtained. In this form of the equation, the relevant material properties are density, p, specific heat, 

Cp, and conductivity, k. The conductivity and specific heat may vary but must remain continuous. 



The surface (heat) energy balance, while gross melting is not occurring, includes the convective 

heat input to the surface along with the possible contribution due to the surface reaction, shown in 

equation 2. This source term is balanced with the energy conducted through the material. 

M Tgas " Twall ) = -k|£ - source (2) 

However, when the system is melting, the energy balance also includes the fixed-surface 

temperature condition and the unknown surface location. The surface temperature cannot rise 

beyond the specified melting value because any additional energy is applied to the latent heat of 

formation of the molten material, as shown in equations 3 and 4, where S^ is the surface location: 

•*wall  = Tmelt (3) 

pL^rf = h ( Tgas- TwaU ) + k|£ " Source. (4) 

To provide closure for the in-depth temperature response of the gun tube, a convective boundary 

condition is applied to the outer surface of the gun tube. 

namb( ^outer-wail-  T„ j  =   ~k— (5) 

The governing equations and boundary conditions are solved using a Crank-Nicholson 

finite-difference technique. Prior to the onset of melting, the governing equations and boundary 

conditions are linear and solutions are obtained in a direct (noniterative) fashion. During the melting 

process, the equations become nonlinear since the dimensions of the computational domain are 

coupled with the regression rate. An iterative approach is utilized during melting to appropriately 

address the nonlinearity. 

Because the boundary of the computational domain moves during the erosion event, a 

transformed version of the governing equation is employed. This allows the equations to be solved 

in a fixed computational space even though the physical boundary is moving.   A generalized 



transformation between the computational coordinate, g, and the physical coordinate, r, is utilized. 

The transformed equations are shown below. 

PCP 

/       -™\ 

'"♦«1 -Mtef (at       'dl)      r rdl \   Tdi) 

1      rc       3t3r (6) 

r      r?       ar 

In this form, the nonlinear nature of the governing equation produced by the moving boundary is 

evident because the metric terms, £r and £t, are not constant and are dependent on the erosion rate 

when the grid is moving. 

This methodology compares very well to the semianalytical solutions of Landau [15] in test 

cases [7]. 

4. Heat Transport to Surface 

The heat flux to the surface is provided through convective heat transport and energy release as 

shown [16,17]. 

Qw = 0.037 JilRe.^Cp(Tg-Tw), (7) 

c * where — is the compressible skin friction ratio, Re* is the compressible Reynolds number, u is 

the viscosity, x is a pressure normalized length scale from the entrance region, CP is the specific heat 

of the gases, and T and Tw are the gas temperature and wall temperature, respectively. 



This heat flux reduces to the following boundary condition imposed upon the inner wall: 

dT k_ = h     (T   - T ) + source. 
dr        conv^ s       w' 

(8) 

This boundary condition has been modified for erosion studies with the incorporation of surface 

defects primarily in coated gun tubes. This has been done by using the ratio of the Stanton numbers 

(Nusselt/Reynolds/Prandtl) for smooth and rough tubes, defined by the depth of the pit. The 

frictional factor may be computed by solving Colbrook's function [18], as shown in equation 9. 

r1" = -2iog 

/ e/D        2.51 N 
  +   
3.7 V^ReDJ 

(9) 

with e the depth of the defect, D the bore diameter, and Reo the Reynolds number. The computation 

of the Stanton number for rough and smooth surfaces can be performed through the following set 

of equations and instructions in the Handbook of Single-Phase Heat Transfer [19]. 

B(e+) = 
> f 

+ 2.5 In ^    +3.75, (10) 

where f is the friction factor and e+ is defined as 

e+ = —Re. 
D    N 2 

(11) 

The following transcendental correlation provides the Stanton number. 



g(OPrn = 
f/<2St) " 1   +B(e+), (12) 

which when reduced results in the following relationship: 

St =  —^ - • (13) 
1 + Jfr2(g(e+)Pr» - B(e+)) 

The ratio of the smooth Stanton number to that of the current "rough" Stanton number using the 

erosion depth as the dimension of the defect "e" provides some measure to the augmentation due to 

the flow disturbances of a sand grain type roughness. 

5. Multicomponent Diffusion and Mass Transport Scheme 

Mass transport to the surface is provided through a concentration potential (J) icoreflow ~ 4>iwau for 

each species i and a mass transport coefficient, rv derived from Sherwood number correlations 

integrated over space and time [8], as shown in equation 14: 

Mass, = //hm( d>icore_flow - 4>iwaI1 )dAdt. (14) 

Currently, species are assumed not to penetrate the surface, with the exception of carbon; however, 

the diffusion module is general enough to readily incorporate this possibility in the future. 

In order to derive the mass transport coefficient, h^ for a specific species from the Sherwood 

number, Sh = hJJTi^, where L is a length parameter, the diffusion coefficient, D12, of species 1 into 

species 2 must be determined. The Lennard-Jones 6-12 model is used to model the binary 

diffusion [20]. 



_ 0.0026280^T3(M! +M2)/2M1M2 

Dl2= Po?2 Ofc»^ • 

where Mj, M2 are the molecular weights of the binary species, T is the temperature, P is the pressure, 

o12 is the collision diameter, and Q12
(1,1) is the collisional cross section integral obtained through table 

interpolation. 

The binary diffusion provides the basis for the multicomponent diffusion coefficient. Each 

binary diffusion possibility for species i, j, is used and weighted vs. all other possibilities in the 

following mixture coefficient combinatory methodology of Wilke in Anderson [21]. 

im v 

thus enabling the calculation of the diffusion coefficient for a particular specie into a mixture of 

many species. 

Utilizing the collisional cross sections and diameters for viscosity as well as the molecular 

weight, the following relationship derived from kinetic theory [20] is utilized to determine the 

viscosity and subsequently the mixture viscosity using Wilke's rule in Anderson [21]. 

VMT u = 2.6693 x l(r5-p±- (17) 
°12Q12„ 

The Schmidt number, Sc = u/pD^, where p is the density and p is the mixture viscosity, is used to 

determine which regime of mass transport is applicable. At moderate Schmidt numbers 

(10 < Sc < 1000), the thickness of the boundary layer is much greater than the thickness of the 



viscous sublayer; utilizing the momentum integral method, Ruckenstein [22] derived the following 

Sherwood number: 

±    l( -I -I) 
0.0097 Re 10ScH UP + Q-44^ 3 ~ °-70 Sc  V (18) = 17 U ~' 

1 + 0.064Sc2U-10 + 0MSc 3 " 0.70Sc 6 

For higher Schmidt numbers (Sc > 1000), the thickness of the boundary layer becomes the order of 

magnitude of the thin wall-layer and the following relationship is applicable [23]: 

JL    I 
Sh = 0.0102Re 10Sc3. (19) 

These expressions for the Sherwood number have been compared [23] with much experimental data 

and agree well within the Schmidt number regions specified. 

6. Equilibrium Kinetics 

Equilibrium chemical processes are considered to dominate whenever the characteristic time for 

a fluid element to traverse the flow field of interest is much longer than the characteristic time for 

chemical reactions to approach equilibrium. As the pressure and temperature increase, the molecular 

collision frequency and energy per collision increases, which leads to smaller characteristic chemical 

times, and chemical processes approach equilibrium. 

The condition for chemical equilibrium may be stated as the minimization of the Gibbs Free 

Energy. For a mixture of N species (e.g., atoms or molecules), where the number of moles of 

species, i, is denoted ni5 the Gibbs Free Energy per mole of mixture is given in terms of the Gibbs 

Free Energy of the individual species, g,, the internal energy, e, the temperature, T, the entropy, s, 

the total pressure, p, and the specific volume, v. 

10 



N 

I 
i = 1 

G = £ n; gj = e - Ts + pv (20) 

The equilibrium method employed in the present study is based on the fact that at equilibrium 

the total Gibbs energy of the system attains a minimum value. The problem is to find the set of n/s 

that minimizes G for a specified energy and specific volume (e, V), subject to the constraints of 

material balances. The standard solution to this type of problem is based on the method of 

Lagrange's undetermined multipliers. First we must recognize that the total number of atoms of each 

element in the system is constant. A particular atomic species is denoted by the subscript k, and Ak 

is the total number of atomic masses of the k-th element in the system, as determined by the initial 

constitution of the system. Denoting the number of atoms of the k-th element present in each 

molecule of chemical species i by aik, then the material balance on each element k may be written 

(M used here is the number of elements), 

M 

Eh 
k = 1 

N 

I 
i = 1 
E (niaü-Ak) = 0   (k = 1,2,...,M) (21) 

after introducing Lagrange multipliers, Xk, for each element. Then a new function, F, is formed by 

addition of the last equation to G. The function, F, is identical to G since the summation term is 

zero. However, — and are different since F incorporates the constraints of the material 
dn{ dnj 

balances. The minimum of both F and G occurs when these partial derivatives are zero. 

M 

F = G+ Y:\ 
N 

£ niaik - \ 
Vi = i 

(22) 

cV.n; 

8G M +  E K** = °   (^FJ(i = 1,N) 
e.V.n; 

k = 1 
(23) 

11 



This equation can be rewritten using the definition of chemical potential ai5 for species i, where R„ 

is the universal gas constant. 

6: 
V        '/e.V.n, 

= G° + I^TlnCaj) (i = 1,N) (24) 

Therefore, from equation 23 

M 

*i +  £ Vik = 0   (i = 1,2,...,N). 
k = 1 

(25) 

The standard Gibbs Free Energy change of formation for species i is denoted G°, which is equal to 

zero for elements in their standard states. The activity for species i in solution is given by a; defined 

in terms of the equilibrium constant, K, as, 

K = 1^, (26) 

where the activities of the components are raised to the corresponding stoichiometric coefficients, 

v;. For an ideal gas mixture (XjCJ); = 1), where (fr is the void fraction, 

a. = fj = Xj^jp = p, (27) 

where f, is the fugacity and Xj is the mole fraction for the i-th species. For liquid and solid phases 

[24], 

ln(aj) = ln(l - 1/p), (28) 

which is approximately zero for large pressure, therefore, 6; = G;0 from equation 24. 

12 



There are N equilibrium equations (equation 25), one for each species, and there are M 

material-balance equations (equation 21), one for each element, a total of N + M equations. The 

unknowns in these equations are the nfs, of which there are N, and the Ak's, of which there are M, 

a total of N + M. Thus, the number of equations is sufficient for the determination of all unknowns. 

Numerical experiments were performed with well-known gas-phase systems of which the results 

matched those of the NASA Lewis equilibrium code [14]. 

7. Surface Description 

The full equilibrium control volume approach results in many product mass fractions, which are 

physically impossible due to the constraints of diffusion into the solid phase. Mainly, the carbon in 

the control volume, which results from CO and/or C02 breakdown, will react with as much iron as 

possible to form Fe3C if permitted. To treat this deficiency, the carbon content in the steel resulting 

from the diffusion over the current time step has been integrated. This represents the total amount 

of carbon that may possibly react with the steel while the extra carbon released into the control 

volume is left as carbon graphite C(GR). 

A surface exposed to a carbon concentration G per unit surface area for a specified length of time 

t has a carbon concentration C(x) at a specified depth of x given by the following relationship [25]: 

ill 
C(x) = -^-e4Dt, (29) 

where D is the diffusion coefficient provided over the a and y phases (BCC and FCC lattice 

structure, respectively). The diffusion of carbon into a iron (T < 1118° C) is given by the following 

function in Smithells Metals Reference Handbook [25], where R„ is the universal gas constant. 

13 



D = Q.008e-19-8(Cal/mol)  + 2.2e-293(cal/m0l) 

RJ RUT 
cm2 

\ 

s 
(30) 

while the diffusion of carbon into y iron (T < 1300° C) is provided by 

D = o.36e36(cal/mol) 
/        \ 

2 cmz 

RJ \    s   / 
(31) 

To find the total amount of carbon that has diffused in time t, the concentration function can be 

integrated, having an error function solution as 

f C(x)dx = -^— ( e 4Dt dx = G(erf(x)). (32) 

Integrating the concentration profile to the maximum depth to which material can diffuse in time step 

t, V"(Dt), provides the carbon diffused into the material over the time period. Usually this depth 

ranges from 20 to 80 lattice parameters. To treat the reactant product from the full equilibrium 

calculation, a subset reaction is created consisting of the carbon, iron (a) and iron (y), and iron 

carbide. The total carbon available for reaction is equal to the diffused carbon plus the original 

carbon in the steel as well as the possible carbon on surface, also in the form of iron carbide as 

shown on the left-hand side of the following equation: 

C(GR) + Fe3C + Fe(a) + Fe(y) - C(GR) + Fe3C + Fe(a) + Fe(y), (33) 

where Fe(ce) or Fe(y) are supplied as fresh material, as needed, depending upon the control volume 

temperature. There is assumed no carbon dissolved in Fe(cc) or Fe(y). The product carbon C(GR), 

in the lattice, and FesC from the previous time step are retained as residuals and reintroduced as 

reactants in the next time step. Carbon graphite is permitted to form or be simply transferred from 

a reactant to a product unchanged on the right-hand side if there is excess carbon from the 

14 



equilibrium calculation in comparison to what is possibly available to react with the existing iron. 

The amount of Fe3C that is possible, due to diffusion limitations, is formed and carried over to the 

next time step if the control volume is below the melting temperature of the iron carbide. On the 

other hand, if there is no excess carbon, then Fe(oc) or Fe(y), depending on the temperature, is formed 

or carried over to the next time step. Once this post equilibrium calculation is made, the final energy 

change in the control volume is recomputed and the amount attributable to the residual solids is 

accounted for as the surface source term. 

8. Application to Point Studies 

Three systems are presented in this report including the M829A2 cartridge in an M256 tank 

cannon and both the 616W-APFSDS original cartridge, which had a propellant adiabatic flame 

temperature near 3,650 K, and the M791-APDS-T training round in the 25-mm Bushmaster cannon. 

The calculations for the M829A2 cartridge assume an initial chrome defect or chip. Two 

calculations were then performed for this region using exposed steel. The first involved normal or 

standard heat transfer, and the second applied the previously described surface irregularity 

augmentation to the heat transport due to the actual depth of the defect. The calculations were 

performed over a region from the forcing cone to about 800 mm down-bore. 

Surface temperatures of the first calculation, without the surface roughness factor, are presented 

in Figure 2. As shown, all three locations reach the user-prescribed melting temperature of 1,723 K. 

Figure 3 shows the amount of material lost over the investigated region in comparison to 

experimental data [26,27] for three gun tubes. The experimental defect data show widely varying 

erosion once a defect is formed, with the average presented as a straight line. The tube history is 

provided as the number of rounds fired to the commencement of the series of M829A2 cartridges, 

the number of M829A2 cartridges fired, and the serial number of the tube. 

15 
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Figure 2. Gun Tube Surface Temperatures at Three Axial Locations for a Single Firing of 
an M829A2 Cartridge in an M256 Tank Cannon Without Surface Roughness 
Augmentation to the Heat Transport. 
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Figure 3. Average Erosion Depth per Round at the Bottom of a Chrome Chip in an M256 
Tank Cannon Firing an M829A2 Cartridge Without Surface Roughness 
Augmentation to the Heat Transport. 
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Figure 4 shows the effect of added surface roughness to the calculation in lengthening the 

duration of the melting of the surface. Correspondingly, in Figure 5, the amount of erosion is shown 

to also increase. The resultant amount of erosion appears to be much closer to the average amount 

from the experimental "pit-tracking" data in Figure 5 with the augmentation than without it in 

Figure 3. 
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Figure 4. Gun Tube Surface Temperatures at Three Axial Locations and for a Single Firing 
of an M829A2 Cartridge in an M256 Tank Cannon With Surface Roughness 
Augmentation to the Heat Transport. 

The total erosion in these calculations is due to the sum of the gross melting and the melting of 

iron carbide created near the surface due to the carbon diffusion. This effect can be seen in Figure 6 

without, and in Figure 7 with, the surface roughness augmentation to the heat transport. Figure 6 

shows the surface temperature, which does not rise to the melt temperature of the steel substrate. 

Material, however, is being removed at the surface due to the local surface material melt temperature 

of 1,423 K. The same figure presents how the change in phase from a to y alters the diffusion rate 

due to different interstitial atomic mobilities. 
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Figure 6. Surface Temperature and Carbon Diffusion Depth at the Bottom of a Chrome Chip 
in an M256 Tank Cannon Firing an M829A2 Cartridge, Presented at 1,778 mm 
From the Rear Face of the Tube Without Surface Roughness Augmentation to the 
Heat Transport. 

18 



8*5 o Q. 

© 

II 
la 
u 

le-6 

9e-7 

8e-7 

7e-7 

6e-7 

5e-7 

4e-7 

8e-7 

2e-7 

le-7 

Oe+0 

1 ~\ 
\ 
\ Surface femperi hire 1 

1 

t\ 

} 
^^_ 

\ 
\ 

surface rlelting: )epth 
\ 

Cai bon Difl usion D< pth 

1 
/  ] 

V \ 

1800 

1600 

1400 i 

1200 

1000 

800 

4       6 

Time(ms) 

10 

Figure 7. Surface Temperature, Carbon Diffusion Depth, and Surface Melting Depth in a 
Chrome Chip of an M256 Tank Cannon, Presented 1,350 mm From the Rear Face 
of the Tube for an M829A2 Cartridge With Surface Roughness Augmentation to the 
Heat Transport 

Figure 7 shows the influence of gross surface melting at the same axial location due to the 

addition of surface roughness augmentation. Once the surface reaches the base material melt 

temperature, the carbon diffusion remains constant, as it only depends upon temperature. 

The first of the two 25-mm systems in this study is the M791APDS-T round. Experimental data 

were obtained from a late 1980's study performed by Veritay Inc. [28] in their instrumented test 

fixture. The data included averaged erosion rate/round (over 20 individual rounds were averaged) 

at a series of axial locations given with respect to the commencement of full rifling. When the 

calculations were performed using the interior ballistic data provided by Benet Laboratories [29], 

the results were presented with respect to the rear face of the tube (RFT). This leads to a possible 
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discrepancy of the actual location of the origin of rifling as this location has a tendency to move 

down-bore as the tube has more rounds fired through it. 

The surface temperatures of the cannon firing the M791 cartridge are shown in Figure 8. While 

these temperatures do not reach the bulk melting temperature of the steel used in the 25-mm 

nonchromed nitrided Bushmaster cannon of 1,792 K, there is material loss nonetheless. The 

nitriding was not taken into account in these calculations and would cause some differences in 

subsurface carbon diffusion. Again, as in the previous example, the material is being lost in this case 

due to the material transformation to iron carbide and the subsequent removal of this very thin layer 

when the surface temperature is above the melt temperature of the iron carbide. 
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Figure 8. Surface Temperatures for Three Axial Locations of an M791 Cartridge Fired in an 
M242,25-mm Bushmaster Cannon. 

20 



The result of the computed surface material removal for the M791 is presented in Figure 9 along 

with the experimental data and the location of full rifling. Although the axial location seems to be 

shifted as stated before, the magnitude of material loss appears to be correct. The surface roughness 

augmentation to the heat transfer was not used in this case as the surface is not chromed and 

therefore does not have the site for high recirculating flows. 
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Figure 9. Computed and Experimental Erosion per Round for an M791 Cartridge Fired in 
a 25-mm Bushmaster Cannon. Note That the Experimental Data Were Originally 
Presented With Respect to the Commencement of "Full Rifling," While the 
Computational Data Are Presented With Respect to the RFT. 

Figure 10 shows the bore surface temperatures for the cannon firing the 616W (M919 original) 

cartridge. Also, for this case, the melting temperature of the base material of the Bushmaster cannon 

is not reached. However, the temperatures are indeed somewhat higher in this case than for the 

M791 cartridge, and the surface material removed, shown in Figure 11, reflects the higher diffusion 

of carbon into the gun surface. 
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Figure 10. Surface Temperatures for Three Axial Locations for a 616W (Original M919 
APFSDS) Cartridge Fired in an M242 Bushmaster Cannon. 
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Figure 11. Computed and Experimental Erosion per Round for a 616W (Original M919 
APFSDS) Cartridge Fired in an M242,25-mm Bushmaster Cannon. Note That the 
Experimental Data Were Originally Presented With Respect to the 
Commencement of "Full Rifling," While the Computational Data Are Presented 
With Respect to the RFT. 
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The experimental data in Figure 11 again appears to be shifted with respect to the 

commencement of rifling, while the magnitude tracks the experimental data well. From Figures 11 

and 9, it is shown that the proportional experimental increase in material loss between the M791 and 

616W is closely represented in the numerical calculations. 

9. Concluding Remarks 

An analytical description of the processes involved in the mechanistic description of the 

gas-surface interaction has been presented to include the melt wipe mechanism, equilibrium 

chemistry, surface control volume, heat transfer and roughness augmentation, as well as the 

multicomponent mass transport, and subsurface carbon diffusion. 

Three systems were investigated: the M829A2 120-mm tank cartridge, and two 25-mm 

cartridges: the M791-APDS-T and the 616W-APFSDS. The calculated erosion for the M829A2 

cartridge, given the assumption of a chip in the chrome plating, compared well with the experimental 

data once the surface roughness was incorporated into the heat transport. Neither of the 25-mm 

systems reached the bulk melting temperature of the base material for the Bushmaster barrel, 

although both erode. Carbon diffusion limited erosion predicted the amount of material lost in the 

M791 and 616W cartridges reasonably well. 

Other constitutive models and/or conceptual ideas and additional physics are to be investigated 

to determine their level of importance to surface degradation/erosion, thus providing insight into the 

mechanisms for erosion and possibly the mitigation thereof through additives to control the heat 

transfer, gas chemistry, or possibly altering the structure or physics of the surface. 
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Appendix A: 

Blake Thermochemical Input Decks for 
Propellants Used in This Study 
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Blake Thermochemical input deck for the 25-mm M791 Cartridge using HC-33 propellant. 

TIT,HC-33 NOM 
ING 
PRL,CON,2 
REJ,H2S,S20,S02,K$,KOH$,K20,K202,K02,K2,N02,HN03 
REJ,KCO$,KSO$,K20$,NA2$,ALN,COF2,F2,ALF3,ALO,ALF2,AL23,AL$ 
REJ,C2N,C2H,C2,CH20,CH,CH2,CH3,CN,C2H2,C2H4,C2N2, 
REJ,ALOH,A202,AH02, ALOF,AI02,BAO$ 
REJ,C(S),K2C03 $,K2S04 $,K2S$ 
CM2,NC1325,87.87,NG,6.99,PEG,,68,KN,.66,ALC,.5,ACETON,1.4,H20,.9,C, .15, 
DPA,0.85 
UNI,ENG 
GUN,.05,.05, .6 
QUIT 

Blake Thermochemical input decks for the Original 25-mm M919 Cartridge. 

TIT,HES9053 (L-751) Propellant 
ING 
PRL,CON,2 
REJ,H2S,S20,S02,K$,KOH$,K20,K202,K02,K2,N02,HN03 
REJ,KCO$,KSO$,K20$,NA2$, ALN, COF2, F2, ALF3 , ALO, ALF2, AL23 , AL$ 
REJ,C2N,C2H,C2,CH20,CH,CH2,CH3,CN,C2H2,C2H4,C2N2, 
REJ,ALOH,A202,AH02,ALOF,AI02,BAO$ 
REJ,C(S),K2C03 $,K2S04 $,K2S$ 
CM2,NC1300,34.40,NG,14.91,RDX,45.60,TRIAC,2.90,PEG,0.31,EC,0.52,KN,0.75, 
KS,0.75,H2O, .10,CO.20 
ÜNI,ENG 
GUN,.05,.05,.6 
QUIT 

TIT,HES9053 (L-752) Propellant 
ING 
PRL,CON,2 
REJ,H2S,S20,S02,K$,KOH$,K20,K202,K02,K2,N02,HN03 
REJ,KCO$,KSO$, K20$, NA2$,ALN,COF2,F2,ALF3,ALO,ALF2,AL23,AL$ 
REJ,C2N,C2H,C2,CH20,CH,CH2,CH3,CN,C2H2,C2H4,C2N2, 
REJ,ALOH,A202,AH02, ALOF,AI02,BAO$ 
REJ,C(S),K2C03$,K2S04$,K2S$ 
CM2,NC1300,35.38,NG,14.71,RDX,43.48,TRIAC,3.04,PEG,1.36,EC,0.52,KN,0.84, 
KS,0.77,H2O,.23,C,0.20 
UNI,ENG 
GUN,.05,.05,.4 
QUIT 

TIT,HES9053 (L-753) Propellant 
ING 
PRL,CON,2 
REJ,H2S,S20,S02,K$,KOH$,K20,K202,K02,K2,N02,HN03 
REJ,KCO$,KSO$,K20$,NA2$,ALN,COF2,F2,ALF3,ALO,ALF2,AL23,AL$ 
REJ,C2N,C2H,C2,CH20,CH,CH2,CH3,CN,C2H2,C2H4, C2N2, 
REJ, ALOH, A202, AH02, ALOF, AI02 , BAO$ 
REJ,C(S),K2C03$,K2S04$,K2S$ 
CM2,NC1300,35.71,NG,12.73,RDX,44.78,TRIAC,3.24,PEG,1.08,EC,0.63,KS,1.05, 
KN,0.78,H2O, .24,CO.020 
UNI,ENG 
GUN,.05,.05,.4 
QUIT 

TIT,HES9053 (L-754) Propellant 
ING 
PRL,CON,2 
REJ,H2S,S20,S02,K$,KOH$,K20,K202,K02,K2,N02,HN03 
REJ,KCO$,KSO$,K20$,NA2$,ALN,COF2,F2,ALF3,ALO,ALF2,AL23,AL$ 
REJ,C2N,C2H,C2,CH20,CH,CH2,CH3,CN,C2H2,C2H4,C2N2, 
REJ, ALOH, A202 , AH02, ALOF, AI02, BAO$ 
REJ,C(S),K2C03$,K2S04$,K2S$ 
CM2,NC1300,32.25,NG,14.94,RDX,47.73,TRIAC,2.75,PEG,0.35,EC,0.45,KS,0.78, 
KN,0.75,H2O,.23,C,0.20 
UNI,ENG 
GUN,.05,.05,.4 
QUIT 

Blake Thermochemical input deck for 120-mm Cartridges using nominal JA2 propellant. 

TIT,JA-2 - NOMINAL 
PRL,CON,2 
REJ,H2S,S20, S02,K$, KOH$,K20,K202,K02,K2,N02,HN03 
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REJ,KCO$,KSO$,K20$,NA2$,ALN,C0F2,F2,ALF3,ALO,ALF2,AL23,AL$ 
REJ,C2N,C2H,C2,CH20,CH,CH2,CH3,CN,C2H2, C2H4, C2N2, 
REJ, ALOH, A202, AH02, ALOF, AI02 , BAO$ 
REJ,C(S),K2C03$,K2S04$,K2S$ 
CM2,NC1298,59.02,NG,14.78,DEGDN,24.60,AKAR2,.69,BAO,0.0496, 
C,.0496,H2O,.5 
ÜNI,ENG 
GUN, .05, .05, .4 
QUIT 
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Appendix B: 

XKTC Interior Ballistic Input Decks 
Used in This Study 
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An XKTC input deck of an M829A2 round (Courtesy of Dr. G. Peter O'Hara, Benet Labs) 

M829A2 APFSDS-T 
TTFFTTT001000001060000010010000000 

69   -3 099999 . 3001 
0.015 186.660 0.00025 2.000 0.050 0.005 0.0001 0.0001 

1000  100 1100  100 1500  100 
6   4 
0   0 

5.290E+02 

3   4 
0 

1.470E+01 

0   0 3   2 0    0 0   8 0   0 0   1 

2.890E+01 1 400E+00 0.O00E+00 0.000E+00 0 O0OE+00 0 000E+00 
5.290E+02 0.000E+00 O.OOOE+00 0 0OOE+00 0.O00E+0O 0.000E+00 0 000E+00 
Stick 0.000E+00 7 500E-01 4.400E-01 5.763E-02 0 000E+00 0 000E+00 

1.925E+01 2.200E+01 8.600E-01 0 000E+00 0.O00E+O0 
7 4.310E-01 3.100E-02 8.750E -01 7.000E+00 O.OOOE+00    0 0 000E+00 0 

1.000E+04 1.000E+00 4.175E+04 0 000E+O0 5.000E-01 
1.000E+04 4.040E-03 7.162E-01 1 000E+05 8.600E-04 8.796E-01 0 O00E+OO 8 000E+02 
2.770E-02 1.345E-04 6.000E-01 
2.037E+07 2.482E+01 1.227E+00 2 698E+01 
Stick 7.500E-01 1 925E+01 1.490E+00 5.763E-02 0 000E+00 0 000E+00 

7 3.840E-01 3.900E-02 5.980E •01 7.000E+00 0.000E+00   0 0 OOOE+00 0 
1.000E+04 1.000E+00 4.175E+04 0 000E+00 5.000E-01 
1.000E+04 4.040E-03 7.162E-01 1 000E+05 8.600E-04 8.796E-01 0 000E+00 8 000E+02 
2.770E-02 1.345E-04 6.000E-01 
2.037E+07 2.482E+01 1.227E+00 2 698E+01 
JA2H - 7.500E-01 1 925E+01 1.600E+01 5.763E-02 0 00OE+0O 0 O00E+O0 
15 6.710E-01 3.700E-02 8.750E •01 1.900E+01 O.OOOE+00   0 0 000E+00 0 

1.000E+04 1.000E+00 4.175E+04 0 000E+00 5.000E-01 
1.000E+04 4.040E-03 7.162E-01 1 00OE+05 8.600E-04 8.796E-01 0 000E+00 8 000E+02 
2.770E-02 1.345E-04 6.000E-01 
2.037E+07 2.482E+01 1.227E+00 2 698E+01 
9.968E+06 3.093E+01 1.221E+00 2 300E+01 
O.0OOE+00 2.500E-04 1.250E-03 1 500E-03 
5.000E-01 4.800E+00 4.810E+00 
O.OOOE+00 0.000E+00 O.OOOE+00 
1.400E+01 1.400E+01 O.OOOE+00 
1.400E+01 1.400E+01 0.000E+00 
0.000E+00 O.OOOE+00 O.OOOE+00 
0.000E+00 2.250E+00 3.000E+00 3 090E+00 1.900E+01 3.090E+00 2 200E+01 2 380E+00 
2.373E+01 2.360E+00 2.087E+02 2 360E+00 
0.000E+00 1.000E+02 1.000E+00 1 500E+03 1.500E+00 4.000E+02 2 500E+02 4 000E+02 
1.400E+00 1.470E+01 5.290E+02 2 890E+01 
5.000E-02 4.850E-01 6.000E+00 2 000E+00 
7.770E+00 2.280E-02 7.000E-01 
0.000E+00 1.000E+01 0.000E+00 1 0OOE+00 1.000E+00 
2.200E+01 1.720E+01 4.400E+01 0 000E+00 O.OOOE+00 4.057E+03 

3.0 19. 30. 41. 60. 90. 120. 19. 

7   2 0    0 0   0 0   1 0   0 0   0 0   0 
0.000E+00 0.000E+00 7.200E-01 5 930E-01 4.380E+00 5.930E-01 4 880E+00 7 300E-01 
6.750E+00 

3    4 
0.000E+00 

7.300E-01 
0    0 

1.450E-01 

1.196E+01 1 170E+00 1.546E+01 1.420E+00 

1.800E+01 1 450E-01 2.220E+01 5.000E-03 
2.950E-02 

2    0 
1.000E+04 

1.470E+01 
0 

1.310E-04 

4.550E-02 1 100E+04 4.970E-02 2.500E+04 5 480E-02 1 000E+05 

1.301E+00 1 000E+05 3.950E+00 1.761E-01 
O.OOOE+00 8.000E+02 2.770E-02 1 345E-04 0.000E+00 
9.300E+06 2.239E+01 1.258E+00 
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An XKTC input deck of an M791 round (Courtesy of Dr. G. Peter O'Hara, Benet Labs) 

25MM M242 M7 
TTFFTTT001000001010100 

75   -2 
0.003 

099999 
73.400 

91 - 135 gm 
010000000000 

0   0  0.00001 
0.0002    1.500 

RESISTANCE-PERRIN 

0.050 0.01 
1000 

10 
50 1100 
3 

0 0 
300E+02 
300E+02 

50 
10 3 

0 
.470E+01 
. 000E+00 

Perf HC33 
7 1.040E-01 1.000E- 

740E+03 
000E+03 
837E+07 
837E+07 
968E+06 
OOOE+00 
300E-02 
000E+00 
OO0E+00 
OO0E+00 
OOOE+00 
530E-01 
983E+00 
OOOE+00 
480E-01 
941E+01 
847E+00 

0.000E+00 
0.OOOE+00 
4.700E+00 

0.00 
0.07 

0   0 

, OOOE+00 5 
390E-03 8 
.511E+01 1 
.837E+07 
.093E+01 
.200E-04 
,730E-01 
.OOOE+00 
,000E+00 
OOOE+00 
,500E-01 
.615E-01 8 
.040E-01 7 
.500E+03 
.126E+03 
.640E+02 
.280E-02 
.300E+02 
.000E+00 
.977E-01 

4.25 
0.00 

0    0 

890E+01 1 
000E+00 0 
300E-02 4 
02 1.100E' 
OOOE+04 0 
053E-01 0 
234E+00 2 
500E-01 1 
221E+00 4 
500E-04 
073E+00 
000E+00 
000E+00 
OOOE+00 
300E-02 
330E-01 
886E+01 
600E-02 
190E+00 
OO0E+01 
000E-01 
777E+01 
OOOE+00 
OO0E-02 

4.5 
0.00 

0    0 

400E+00 0.OOOE+00 0.000E+00 
000E+00 O.OOOE+00 0.000E+00 
447E+00 2.141E-01 5.560E-02 
•01 7.000E+00 0.000E+00    0 

0.0001 

0   0 

0.000E+00 
0.000E+OO 
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An XKTC input deck of an "original" M919 round (Courtesy of Dr. G. Peter O'Hara, Benet Labs) 

25MM M242 M919 Round - 132 gm RESISTANCE-PERRIN 
TTFFTTT001000001040100010000000000 

7099999 099999 0   0 0.00001 
.005 74.105 0.00002 1.500 0.050 0.003 0.0001 0.0001 

10    3 
0   0 

5.300E+02 

3   10 
0 

1.470E+01 

2    0 1   2 0   0 0   5 0   0 0   0 

2.890E+01 1 400E+00 0 000E+00 0 000E+00 0 000E+00 0 000E+00 
5.300E+02 0.000E+00 0.000E+00 0 000E+00 0 OOOE+00 0 000E+00 0 000E+00 
94.5 gm - HES-9053 7.300E-02 4 647E+00 2 083E-01 6 033E-02 0 000E+00 0 000E+00 

7 1.300E-01 1.250E-02 1.375E -01 7.000E+00 0.000E+00   0 0 000E+00 0 
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1.927E+07 2.028E+07 9.000E-01 1 000E+00 2 370E-03 
9.968E+06 3.093E+01 1.221E+00 4 348E-02 
O.O00E+OO 1.200E-04 2.500E-04 
8.730E-01 1.073E+00 1.873E+00 
0.000E+00 0.000E+00 0.000E+00 
0.000E+00 3.000E+00 1.000E+00 
0.00OE+00 O.OOOE+00 0.00OE+O0 
O.OOOE+OO 2.500E-01 7.300E-02 2 875E-01 1 450E-01 4 865E-01 2 800E-01 5 800E-01 
5.530E-01 6.615E-01 8.330E-01 6 735E-01 3 876E+00 6 735E-01 4 447E+00 4 815E-01 
4.983E+00 5.040E-01 7.886E+01 5 040E-01 
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